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Abstract. Given two snapshots of an atomistic system, taken at di�erent stages
of the deformation process, one can compute the incremental deformation gradient
�eld, F, as de�ned by continuum mechanics theory, from the displacements
of atoms. However, such a kinematic analysis of the total deformation does
not reveal the respective contributions of elastic and plastic deformation. We
develop a practical technique to perform the multiplicative decomposition of
the deformation �eld, F = FeFp, into elastic and plastic parts for the case
of crystalline materials. The described computational analysis method can be
used to quantify plastic deformation in a material due to crystal slip based
mechanisms in molecular dynamics and molecular statics simulations. The
knowledge of the plastic deformation �eld, Fp, and its variation with time can
provide insight into the number, motion, and localization of relevant crystal
defects such as dislocations. The computed elastic �eld, Fe, provides information
about inhomogeneous lattice strains and lattice rotations induced by the presence
of defects.
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1 INTRODUCTION

1. Introduction

Elastoplasticity theory is based on the multiplicative decomposition of the total
deformation gradient F,

F = FeFp, (1)

into an irreversible (plastic) part Fp, and a reversible (elastic) part Fe [9]. In
simulation models of continuum crystal plasticity, the plastic and elastic deformation
�elds are typically evolved explicitly, such that both contributions are already known.
In classical molecular dynamics and statics, in contrast, the total deformation is the
only quantity that is considered and used in common analyses. The atomic trajectories
obtained from the simulation model always re�ect the combined e�ect of both elastic
and plastic deformation, and separating both contributions is a non-trivial task.

Elastic-plastic decompositions of the total deformation gradient in atomistic
simulations may prove useful in quantitative analyses, since the irreversible
deformation of crystalline solids is tightly linked to crystal defects, either through
their creation (stacking faults, grain boundaries etc.) or their motion (dislocations).
Therefore, knowledge of the plastic deformation �eld, Fp, and its variation with time
can provide quantitative insight into the number, mobility, and localization of such
defects. Furthermore, the ability to calculate the �elds Fp and Fe from atomistics
would provide a direct connection of atomistic models to continuum models of crystal
plasticity.

Recently, a computational analysis technique, the so-called dislocation extraction
algorithm (DXA) [15], has been developed to extract all lattice dislocation lines from a
snapshot of a molecular dynamics simulation and to determine their individual Burgers
vectors. However, this method yields only the instantaneous shape and topology of
the dislocation network in the material at a given instant. While this data enables the
measurement of the lattice dislocation density (scalar and tensorial), it is inadequate
to quantify the actual contribution of dislocations to plastic deformation, which is
generated by their motion. The lack of correlation between successive snapshots of the
obtained dislocation network makes it hard to infer the exact area swept by individual
dislocation segments, and to keep track of the reactions they undergo.

All the relevant information about the motion of dislocations is, however, encoded
in the atomic trajectories, which are naturally obtained from molecular dynamics
simulations. In the past, rudimentary attempts were made to exploit this information.
Zimmerman et al. [18] introduced an atomistic quantity known as the slip vector,
which, derived from the initial and the �nal con�guration of the system, describes
an atom's relative motion with respect to its neighbors. A moving dislocation will
leave behind a 'trail' of atoms whose slip vector is equal to the Burgers vector of the
dislocation. Later, the slip vector approach was picked up by Vo et al. [17] to develop
an approximate measure of the plastic strain produced by dislocations in an MD
simulation: In cases where the relevant dislocation types and slip system orientations
are known, one can infer the aggregated plastic slip by counting the atoms that exhibit
certain slip vectors. However, this method fails to properly account for plastic strain
produced by dislocation junctions, or dislocations moving on crossing glide planes,
which cause non-standard slip vectors.

In the present work, we will develop a practical way of computing the plastic
deformation �eld in a crystalline solid from the atomic trajectories obtained by
molecular dynamics simulations. In contrast to the method by Vo et al. [17],
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2 TOTAL DEFORMATION GRADIENT

the technique described here does not require a calibration step or knowledge of
the slip systems of dislocations. In particular, it yields a continuum-type tensor
�eld representation of the plastic deformation at the atomic level, from which the
macroscopic plastic strain can be easily obtained by integration.

2. The total deformation gradient �eld

Before turning to the elastic-plastic decomposition, we �rst discuss the calculation of
the total deformation gradient, F, from atomistics. The existing literature on this
topic (e.g. [13, 7, 19, 11]) describes di�erent approaches to calculating an atomic

deformation gradient, that is, a deformation gradient de�ned at the atomic sites. In
general, the value of F at the location of an atom can be obtained from its relative
motion with respect to nearby neighbor atoms. The existing methods mostly di�er in
the way these neighbors are picked and how their contributions to the F at the central
atom are weighted.

For our purposes, however, we will pick up an idea �rst published by Mott et al.
[11], which yields a continuum tensor �eld from the displacements of atoms using
a Delaunay tessellation of space. As opposed to the atomic deformation tensors
mentioned above, such a deformation gradient �eld is de�ned at all points in space
(except at the atomic sites themselves). This will enable us to exactly integrate the
�eld over the simulation volume (or parts of it) to obtain a macroscopic deformation
tensor. And, as will become evident later, this approach is particularly useful when it
comes to decomposing the total deformation into elastic and plastic contributions.

2.1. Kinematics

Molecular dynamics (MD) and molecular statics (MS) simulations output a set of
atomic trajectories, {xi(t)}, describing the motion of individual particles or atoms in
a global Cartesian coordinate system. The parameter t may denote continuous time in
a MD simulation, or, alternatively, the load step in a MS simulation. The displacement
vector of the i-th atom is given by ui = xi(t1)−xi(t0) = xi−Xi. Here, t0 and t1 refer
to two snapshots of the atomistic system, called the initial (or reference) con�guration
B0 and the �nal (deformed) con�guration B1. We require the two con�gurations to
be holonomic to one another, meaning that the total number and the identities of
atoms do not change during the time interval t0 → t1.

Note that we do not assume that the reference con�guration B0 corresponds to a
perfect, undeformed state of the crystal. In fact, both con�gurations, B0 and B1, may
be taken at any stage of the deformation simulation, and we consider the incremental

deformation occurring in between these two snapshots.
In a continuum description, in contrast to atomistics, the displacement �eld

u = x(X)−X is de�ned at every material point X of the continuum in the reference
con�guration. The second-order tensor �eld F = ∂x

∂X = I + ∂u
∂X characterizes the local

deformation and rigid-body rotation the material undergoes from t0 to t1.

2.2. Deformation gradient �eld from atomistics

In atomistic simulations, the value of the displacement �eld u(X) is known only at the
discrete atomic positions {Xi}. Thus, its gradient is not de�ned, unless we make an
assumption on the form of the continuum �eld at other points of space. To establish
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Figure 1. Schematic illustration of the calculation of the total deformation
gradient �eld based on a space-�lling tessellation of the atomistic system.

the transition to a continuum description, we assume that u(X) varies piece-wise
linearly in the regions between atoms [11]. The interpolation of atomic displacement
vectors is done on the basis of a space-�lling decomposition into tetrahedral elements
obtained from a Delaunay tessellation as shown in �gure 1. In three-dimensional space,
each tetrahedral element connects four atoms, and the nodal displacements obtained
from molecular dynamics are interpolated linearly inside each element. Note that
the Delaunay tessellation is computed only once for the reference state B0, and then
follows the atoms as they move.

The gradient of this piece-wise linear displacement �eld is piece-wise constant:
Within each tetrahedral element α, the deformation gradient F(X) = Fα (X ∈ α)
is homogeneous and determined exclusively by the displacement vectors of the four
corner atoms. The tensor Fα can be computed most e�ciently for an element from the

Cartesian coordinates of its four vertex atoms in B0 and B1, denoted by
{
X(α)

v

}
and{

x(α)
v

}
(v = 1 . . . 4) respectively. The edge vector X(α)

vw = X(α)
w −X(α)

v connects the

v-th and w-th vertex of the tetrahedral element in the reference con�guration, while

x(α)
vw = x(α)

w − x(α)
v connects the same pair of atoms in the �nal con�guration. The

deformation gradient Fα transforms such a line element, i.e. x(α)
vw = FαX(α)

vw . We may
compute Fα from any triple of non-coplanar edges of the tetrahedral element using a
product of 3× 3 matrices of the form

Fα =
[
x(α)

12 x(α)
13 x(α)

14

]
·
[
X(α)

12 X(α)
13 X(α)

14

]−1

. (2)

The resulting piece-wise constant �eld F(X), de�ned on the tetrahedral mesh, maps
all edges of the tessellation from the initial to the �nal con�guration.

Note that, in a molecular dynamics simulation at �nite temperature, the
deformation �eld will re�ect the instantaneous thermal displacements of atoms. Thus,
even in the absence of deformation, the computed deformation �eld will �uctuate at
the atomic scale. If this e�ect is undesirable, one can take time-averaged atomic
positions to compute the Fα, or coarse-grain the deformation �eld as discussed in the
following section.

2.3. Macroscopic and mesoscopic deformation

In an MD simulation with periodic boundary conditions, the macroscopic deformation
of the solid is fully determined by the a�ne change in shape of the simulation cell
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(�gure 1). We obtain the same macroscopic deformation tensor by integrating F over
the entire simulation domain:

Fmacro =
1
V

�
FdV, (3)

with V denoting the volume of the simulation box in the reference con�guration. Since,
in our case, F is a piece-wise constant �eld, this integral can be written as a sum over
all tetrahedral elements:

Fmacro =
1
V

∑
α

FαVα =
∑

α FαVα∑
α Vα

(4)

The homogenized deformation of a �nite region of the body (for instance a grain, or
any other representative volume element) can be determined in a similar manner by
restricting the sum to an adequate subset of tessellation elements. Likewise, a coarse-
graining of the deformation �eld can be performed by projecting the volume-weighted
Fα values to a coarser mesh.

Note that, even though we calculated the continuous deformation �eld on the basis
of a Delaunay tessellation, any other space-�lling tessellation consisting of non-empty,
non-overlapping tetrahedra would have worked too. The choice of the tessellation will
a�ect the resulting microscopic �eld F to some extent, but the homogenized value
Fmacro is independent of the tessellation.

Some care must be taken if atomic displacements are di�usive. Interpenetration
of di�using atoms leads to inverted tessellation elements in the deformed con�guration
(detFα ≤ 0). However, since the integrated deformation gradient, Fmacro, is
determined by boundary displacements alone (according to the Gauss divergence
theorem), the sum (4) remains valid in such a case. Furthermore, one may apply the
elastic-plastic decomposition method, described in the following, to inverted elements
too.

3. Separating plastic and elastic deformation

3.1. Introduction

The theory of elastic-plastic decomposition of F is based on the concept of a virtual
intermdiate con�guration of the body that is stress-free everywhere. Nemat-Nasser
[12] described a hypothetical procedure for obtaining this stress-released con�guration
from an elastoplastically deformed con�guration B of a continuum body: For a given
point x in B, consider a small neighborhood n(x) such that the material in this
neighborhood can be regarded as macroscopically homogeneous. Isolate n(x) from
the rest of B, and release all surface tractions exerted by the rest of B upon n(x)
as well as all body forces on the isolated material element. Thereby we obtain the
unstressed state of n(x). Here, one makes the assumption that the unloading does
not involve plastic �ow. If this procedure is performed for all neighborhoods which
comprise the body, one obtains the �ctitious stress-released con�guration L , which is
connected to the physical con�guration B via the elastic deformation Fe. Note that
the unstressed material patches will usually not constitute a continuous body; i.e., Fe

is an incompatible tangent map.
As mentioned in section 2.1, both the reference con�guration B0 and the �nal

con�guration B1 may be defective states of the crystal, taken at any stage of the
deformation process, and may exhibit residual and external stress �elds. Let us
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3.1 Introduction 3 ELASTIC-PLASTIC DECOMPOSITION

therefore apply the described dissection-unloading procedure to both snapshots, B0

and B1, individually. We will obtain two di�erent stress-released con�gurations, L0

and L1, which are connected to the corresponding physical con�gurations via two
elastic �elds, Fe

0 and Fe
1, respectively. Here, F

e
0 represents the purely elastic mapping

L0 → B0, while Fe
1 describes the mapping L1 → B1.

Figure 2. A representative material element undergoing both elastic and plastic
deformation. The total deformation can be split up into three parts (equation 5):
Two elastic �elds (Fe

0 and Fe
1) that describe the deviation of the initial and �nal

con�guration from a locally stress-free state, and the plastic slip deformation, Fs,
that connects the two stress-free con�gurations. Note that the two intermediate
con�gurations are isoclinic con�gurations, i.e., their frame of reference is aligned
with the local lattice orientation.

We now consider the stress-released states L0 and L1 as intermediate
con�gurations and subdivide the total deformation B0 → B1 (described by F) into
the sequence B0 → L0 → L1 → B1. We then arrive at a corresponding three-term
decomposition [16]

F = Fe
1F

sFe−1
0 . (5)

This decomposition of the total deformation is depicted in �gure 2. Here we have
introduced the deformation Fs, which connects the two intermediate con�gurations
L0 and L1. Taking the initial con�guration B0 as �xed, Fe

0 will not change with
time and characterizes the initial residual strains present in B0. Fs comprises the
plastic deformation the �rst intermediate con�guration L0 undergoes to arrive at the
second intermediate con�guration L1; and Fe

1 describes the elastic distortion of the
�nal con�guration B1 with respect to the associated stress-free con�guration L1.

In our description, L0 and L1 are both isoclinic intermediate con�gurations [10].
That is, the frame of reference used to describe these virtual con�gurations is aligned
with the local lattice structure. The tensors Fe

0 and Fe
1 both contain a rotational and

a stretch component. The rotational parts re�ect the local orientation of the lattice,
in B0 and B1 respectively, in the global simulation coordinate system. Accordingly,
they vary from grain to grain in a polycrystal. The stretch parts of Fe

0 and Fe
1 are

de�ned by virtue of the stress release procedure and describe the initial and current
local elastic strain �elds in the crystalline solid due to residual and external stresses.

Since L0 and L1 are both �ctitious con�gurations, Fs has no physical meaning
so far. While the elastic �elds Fe

0 and Fe
1 are speci�ed through the described

dissecting and unloading procedure, Fs is de�ned only implicitly through equation 5,
i.e. Fs = Fe−1

1 FFe
0. Since, by de�nition, L0 and L1 are both locally stress-free
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3.2 Incremental deformation tensors 3 ELASTIC-PLASTIC DECOMPOSITION

con�gurations, Fs must be a fully plastic deformation. We will refer to Fs as the
slip deformation gradient to distinguish it from the conventional plastic deformation
gradient Fp of the two-term multiplicative decomposition, equation 1.

3.2. The incremental elastic-plastic decomposition of deformation

In (computer) experiments, where a specimen is deformed by applying an external
load, decomposing the total deformation into elastic and plastic fractions may be
instrumental in interpreting a measured stress-strain curve or drawing conclusions on
the internal processes by which deformation proceeds.

Due to the usage of isoclinic intermediate con�gurations in the formulation of
the elastic-plastic decomposition in the preceding section, the elastic �elds Fe

0 and
Fe

1 directly re�ect the microscopic structure of the material (including residual elastic
strains and lattice orientations). For some analyses, however, the structural details of
the material do not matter and only the incremental elastic and plastic deformation
�elds induced by externally applied forces are of interest. In the following we will
therefore propose an alternative elastic-plastic decomposition which does not depend
on the microscopic structure of the specimen.

At t = t0, prior to deformation and in the absence of deformation (F = I), there
can be no plastic slip. This corresponds to the initialization condition Fs(t0) = I,
and, consequently, the current elastic �eld must be equal to the initial elastic �eld,
Fe

1(t0) = Fe
0. During deformation (at t1 > t0) the current elastic �eld, Fe

1, will evolve
due to the applied external loads, and Fs will eventually depart from identity when
plastic deformation sets in. We can separate the induced elastic deformation from the
preexisting residual strain at time zero by de�ning a new quantity, the incremental
elastic deformation F∆e, which describes only the change induced by external loads:

F∆e = Fe
1F

e−1
0 . (6)

The corresponding incremental plastic deformation F∆p is obtained by requiring that
the product equals the total deformation, i.e. F4eF4p = F. From equation 5 we then
get

F∆p =
(
F∆e

)−1
F = Fe

0F
sFe−1

0 . (7)

The �elds F∆e and F∆p are both identity at time zero, and they are independent of
the frame of reference used to describe the isoclinic intermediate con�gurations. This
makes them natural choices for measuring incremental elastic and plastic deformation
in simulated experiments, in particular for the case of polycrystalline materials.

3.3. Calculation of the elastic and plastic �elds

We now describe a formal way of computing the �elds Fe
0, F

e
1, and Fs of equation 5 at

the atomic scale. Our approach is similar to the calculation of the total deformation
�eld, F, described in section 2.2, which we assume has already been performed. That
is, a space-�lling tessellation connecting all atoms in B0 has been generated, and
each edge i-j of that tessellation has been assigned two vectors, Xij = Xj − Xi

and xij = xj − xi, from which the deformation gradient in the adjacent elements is
computed according to equation 2.

For now, let us suppose we were able to actually perform the hypothetical
unloading procedure described in section 3.1 to determine the two intermediate
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3.3 Field calculation 3 ELASTIC-PLASTIC DECOMPOSITION

con�gurations. An atom i in the �nal con�guration B1, located at xi, will move
to a new position li in the intermediate con�guration L1 upon unloading the material
neighborhood surrounding it. Likewise, the same atom i, starting at Xi in B0, will
move to a position Li in the corresponding stress-released con�guration L0. Given

a tetrahedral element α of the tessellation, the edge vectors L(α)
vw = L(α)

w − L(α)
v and

l(α)
vw = l(α)

w − l(α)
v connect two vertices v and w in the �rst and the second intermediate

con�guration respectively. The elastic-plastic decomposition for element α is then
performed by computing the matrices

Fs
α =

[
l(α)
12 l(α)

13 l(α)
14

]
·
[
L(α)

12 L(α)
13 L(α)

14

]−1

(8)

Fe
0α =

[
X(α)

12 X(α)
13 X(α)

14

]
·
[
L(α)

12 L(α)
13 L(α)

14

]−1

(9)

Fe
1α =

[
x(α)

12 x(α)
13 x(α)

14

]
·
[
l(α)
12 l(α)

13 l(α)
14

]−1

. (10)

Note that we make use of the existing tessellation of the atomistic system, as
shown in �gure 3, which has been generated in the reference con�guration B0 to
calculate the �eld F. Even though this tessellation was originally constructed on the
basis of the atomic coordinates {Xi}, it is de�ned exclusively by its topology, i.e. by
the identities of atoms that are connected by tetrahedral elements.

The above calculation assumes that the elastic deformation within the tessellation
element α is compatible and uniquely de�ned. In section 3.11 we will discuss the
treatment of elements with incompatible elastic deformation, which are intersected
by a dislocation (in either B0 or B1). Secondly, we presumed that the element is
completely contained within a single material patch when the body is dissected as
part of the virtual unloading procedure.

Figure 3. Schematic illustration of the plastic slip calculation in the stress-free
lattice. The slip deformation gradient Fs

α inside a tessellation element is computed
from its edge vectors before and after the plastic slip took place (equation 8).
In this example, the lattice vector lac, connecting atom a and c, cannot be
determined directly since a and c are no longer direct neighbors in the deformed
con�guration. It must therefore be inferred from the vector sum lac = lad + ldc.

Equations 8�10 involve only vectors between atoms that are connected by a
tessellation edge. It therefore boils down to developing a computational method that,
given two nearby atoms i and j in the crystal, determines the connecting line elements
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3.4 The stress-free con�guration 3 ELASTIC-PLASTIC DECOMPOSITION

lij = lj − li and Lij = Lj − Li in the stress-free con�gurations L0 and L1 (without
explicitly determining Li,Lj ,li or lj).

3.4. De�nition of the stress-free intermediate con�gurations

In the preceding section we outlined how the �elds Fs, Fe
0 and Fe

1 can be obtained
on the basis of the two stress-free intermediate con�gurations L0 and L1. While
the total deformation gradient inside a tessellation element is fully determined by the
kinematics of its four corner atoms, the decomposition into elastic and plastic parts
is directly a�ected by our choice of the con�gurations L0 and L1. Therefore, we
�rst have to de�ne these virtual con�gurations more precisely before we can develop
a practical way of computing them from the snapshots B0 and B1.

As mentioned in the introduction, the transitions B0 → L0 and B1 → L1,
associated with the tangent maps Fe−1

0 and Fe−1
1 , are completely equivalent. Thus,

we seek a computational technique that, given an arbitrary atomistic con�guration
B, yields a corresponding stress-free con�guration L . Such an algorithm can then be
applied to both the initial and �nal con�gurations, B0 and B1, separately to determine
the shape of a tessellation element in both relaxed con�gurations. In the following we
denote positions and vectors in the generic physical con�guration B with the letter
x, and corresponding positions and vectors in the associated virtual con�guration L
with the letter l.

We start o� with Nemat-Nasser's [12] hypothetical dissecting and unloading
procedure, described in section 3.1, and discuss its application to defective crystals
at the atomic scale. Given a point x in B (at which the elastic mapping Fe is to
be determined), it seems, at �rst glance, natural to take the tessellation element
containing the point x as the neighborhood n(x). By construction, the deformation
of a tetrahedral element is always homogeneous. However, the material within the
tessellation element is utterly inhomogeneous: All mass is concentrated in the four
corner atoms. Hence, it is clear that a representative material neighborhood n(x)
must comprise more than one tessellation element, and enough atoms to appear
macroscopically homogeneous. In particular, n(x) must be large enough such that
the e�ect of the free surfaces, created by isolating it from the rest of the body, may
be neglected.

Frank [6] introduced the concept of the so-called good and bad regions that make
up a crystalline material. Inside the good crystal regions, the lattice structure is
clearly visible, and atoms are arranged on regular lattice sites. The bad region of a
crystal comprises the cores of crystal defects, where the arrangement of atoms deviates
considerably from that of the ideal lattice.

If the point x is located in a good, defect-free region of the crystal, then there is an
obvious choice for the neighborhood n(x) to be used in the stress-removal procedure:
Take a group of atoms around x that constitute a unit cell of the lattice. Apply
periodic boundary conditions to this isolated, elastically strained unit cell to model
an in�nite lattice with the desired homogeneous characteristics, and to avoid the
e�ect of free surfaces that would result from the cutting operation. This unit cell
will undergo a certain elastic deformation when being relaxed to the stress-free state,
yielding the local elastic deformation tensor Fe−1 at x. Note that, during relaxation
of the unit cell's shape, atoms may undergo additional internal relaxations. Thus, the
elastic deformation at the smallest level, the tetrahedral tessellation, can actually be
non-uniform, even if the deformation at the unit cell level is homogeneous.

9
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What is a good choice for the representative neighborhood n(x) if x is located
inside the core region of a crystal defect (the bad crystal region)? Two central
requirements need to be ful�lled: The neighborhood, while being as small as possible,
should be chosen large enough such that the contained material is macroscopically
homogeneous; and the relaxation must proceed without plastic �ow after removing
the surface tractions from the isolated material patch. The core region of a crystal
defect is, by its de�nition, inhomogeneous due to the lack of structural long-range
order. Thus, the neighborhood n(x) needs to be larger than the defect core in which
x is located. On the other hand, to avoid unnecessary homogenization, n(x) should
include only a rather small amount of good crystal lattice around the defect, and it
must not overlap with other defects embedded in the lattice. The required absence of
plastic �ow during relaxation of the neighborhood n(x) implies that the defect remains
in n(x) in the stress-released con�guration L [4]. Here, we de�ne plastic �ow as the
local transition of the atomistic structure from one (su�ciently) stable con�guration
to another. Hence, the defect cannot dissolve during purely elastic relaxation of the
isolated material patch.

It is obvious that the discussed dissection-unloading procedure has only
theoretical relevance. In view of our goal to develop a useful analysis technique for
atomistic computer simulations of crystalline materials, it seems unfeasible for a couple
of practical reasons:

• It is not clear how the neighborhood n(x) around a defect can be picked in an
automated fashion such that the homogeneity requirement is met, in particular
if the distribution of defects in the crystal is irregular and dense.

• The size of defects such as stacking faults and grain boundaries can be on the
order of the system size. Then the requirement of the neighborhood n(x) to be
vanishingly small and to encompass the entire defect becomes contradictory.

• At the atomic scale, the e�ect of free surfaces cannot be neglected. When cutting a
patch from the atomistic body, the newly created surface will inevitably introduce
additional stresses, which were not present in the original material. This would
change the measured elastic deformation gradient Fe−1 in an uncontrolled way.

• The requirement that the unloading does not trigger plastic transitions in the
isolated material patch cannot be enforced in classical atomistic simulations.

3.5. A practical solution

In view of the aforementioned issues, we propose a reverse approach to obtain the
mapping of atomic positions from B to L : Instead of explicitly dissecting the body
into small regions, and relaxing each piece individually, we start out from the relaxed
states of lattices and possible defect structures and look for occurrences of these known
structures in the atomistic system. Once we have found a structure in the strained
crystal, we can directly compare it to the corresponding stress-free reference state to
compute the local elastic deformation gradient (�gure 4).

For instance, the equilibrium lattice structure of a crystalline material is usually
already known, because the interatomic potential used in atomistic simulations has
been explicitly �tted to reproduce this structure. Thus, it is su�cient to determine
whether the atoms in the vicinity of some point x in B form this crystal structure.
If yes, their relative positions in the relaxed state L can be predicted directly on the
basis of the ideal unit cell.
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3.6 The structure catalog 3 ELASTIC-PLASTIC DECOMPOSITION

In the �eld of atomistic computer simulations it is common practice to employ
structure identi�cation methods to study and visualize defects such as dislocations,
stacking faults and grain boundaries in a simulated crystal. Examples for such
techniques are the common neighbor analysis (CNA) [8], the bond angle analysis
[2] and the centrosymmetry parameter [18]. They are used to classify the local
arrangements of atoms in a simulation snapshot, and to associate them with a known
reference structure. One important feature of these identi�cation algorithms is their
insensitivity to elastic distortions: The correct reference structure is still recognized,
even if the actual atomic positions deviate from the corresponding ideal sites (as long
as the displacements do not exceed a speci�c tolerance).

We will need two main ingredients for an implementation of the outlined reverse
mapping approach: The �rst one is a catalog of lattice structures and defect structures
that play a role in the atomistic simulation. It is the task of the scientist to anticipate
what types of defects are present in the crystalline material or could appear during
plastic deformation. In practice, the material-speci�c, stress-free reference state of
each lattice or defect structure is determined by performing a separate static relaxation
simulation as will be described below. Note that dislocation defects are explicitly
excluded from this catalog for the following reason: Because our ultimate goal is
to quantify the amount of plastic slip the crystal undergoes from B0 to B1, only
the slipped regions of the lattice (in the wake of dislocations) are of interest. The
dislocation cores themselves do not contribute to it. Moreover, the elastic �eld
within a dislocation core is incompatible, rendering the elastic-plastic decomposition
at the atomic level ambiguous (see section 3.11 for a discussion). On the contrary,
stacking faults, grain boundaries, interfaces and the like play an important role for
the measurement of plastic deformation, because their appearance and disappearance
is directly linked to a certain amount of plastic strain.

The second ingredient is the structure identi�cation method. Its task is to �nd
occurrences of the reference structures in the simulation snapshot. As mentioned
before, there exist e�cient algorithms such as the common neighbor analysis method,
which classify local atomic arrangements based on the characteristic coordination
pattern of atoms. So far they were limited to simple lattices such as face-centered
cubic (fcc), body-centered cubic (bcc), and hexagonal-close packed (hcp) structures.
Recently, we have developed a more sophisticated analysis algorithm [14], which can
also identify multi-atomic patterns and highly non-symmetric arrangements of atoms
as they occur in crystal defects and lattices with larger unit cells. This pattern
matching technique is �exible in terms of the structures to search for. That is, the
characteristic signature of an atomic structure is not hard-coded into the algorithm,
but is generated automatically on the basis of a template structure provided by the
user. For an in-depth discussion of these techniques we refer the reader to [14].

The described reverse approach is depicted schematically in �gure 4: First the
physical con�guration B is decomposed into discrete regions, each matching to one
of the reference patterns in the structure catalog. Then the elastic �eld is computed
from the displacements of atoms from their ideal positions in the matching template
structure.

3.6. The structure catalog

In practice, the required catalog of template structures is obtained by performing a
static relaxation simulation for each lattice and defect type:
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Figure 4. Calculation of the elastic deformation �eld in a defective crystal.
Pictures on the left show a cross-section of an fcc crystal containing a stacking
fault bounded by a Shockley partial dislocation. The structure catalog contains
two reference patterns: the perfect fcc lattice and the in�nite stacking fault core
(both being macroscopically stress-free). The structure identi�cation algorithm
divides the input con�guration B into regions, each matching to one of the ideal
pattern templates. The elastic �eld in the defective crystal is then obtained from
a local comparison of the physical atomic positions to that of the corresponding
reference structure.

(i) For a crystal lattice structure, we prepare a simulation box containing a single
lattice unit cell. Periodic boundary conditions are employed, and the cell shape
as well as the internal degrees of freedom are relaxed until a state of zero stress
is reached.

(ii) In the case of point-like defects such as vacancies, interstitials and small incoherent
inclusions, we set up a large simulation box (with periodic boundary conditions)
that is completely �lled with the parent lattice and contains a single such defect.
The box is made large enough such that elastic interactions between periodic
images of the defect can be neglected.

(iii) For planar defects having a periodic structure such as stacking faults, coincidence-
site-lattice (CSL) grain boundaries and other coherent crystal interfaces we use
a simulation box that is long in the direction perpendicular to the defect plane,
and as small as possible in the two periodic directions to obtain an irreducible
description of the relaxed defect structure.

After relaxing the atomistic structure using a conjugate-gradient minimization
procedure, a reference pattern for the crystal defect is derived from the atoms that
form the core of the defect. Core atoms are those atoms which could not be classi�ed
as lattice atoms by the structure identi�cation method.

3.7. The structure identi�cation algorithm

In this section we give a brief overview of the functionality of the employed structure
identi�cation algorithm. Technical details can be found in [14].
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The algorithm takes an atomistic reference pattern LP from the structure catalog,
and �nds all its occurrences in the input con�guration B. The speci�cation of a
pattern consists of n atoms with the Cartesian coordinates l1, . . . , ln and, depending
on the dimensionality of the defect or lattice structure, up to three repeat vectors
h1,h2,h3 that de�ne the geometry of the irreducible periodic cell. If a match between
the reference pattern and a group of atoms in B is found, the search algorithm yields
the mapping between the atoms in B and in LP. Note that multiple atoms in B may
be mapped to the same atom in LP when the pattern is periodic. Ultimately, for each
nearest-neighbor bond a-b in the matched region of B, we obtain a corresponding
interatomic vector lab in LP.

Note that the rotational symmetries of lattices (and some defects) render the
mapping between the reference pattern and the actual crystal non-unique. For
instance, in the fcc lattice, the nearest-neighbor vectors comprise the 1/2 〈110〉 vector
family in the stress-free unit cell. There are 48 equivalent ways of assigning these
vectors to the bonds of an fcc atom, corresponding to the 48 point group symmetry
operations of the cubic lattice. We therefore have to make sure that the assignment
happens for all atoms in a globally consistent manner, meaning that (i), given any
nearest-neighbor pair a-b in B, the sum lab + lba = 0 vanishes, and (ii), given any
triplet of atoms a, b, c, all three being mutual nearest neighbors, the circular vector
sum lab + lbc + lca = 0 vanishes as well. In other words, the local lattice orientation
established at an atomic site is in alignment with the orientations picked at all its
neighbors, and, ultimately, throughout the entire crystallite.

3.8. Mapping tessellation edges to the stress-free state

The structural analysis described in the preceding section (and in much greater detail
in [14]) maps bond vectors, corresponding to neighbor atom pairs, to the stress-released
state. This information must now be carried over to the edges of the superimposed
tetrahedral mesh to perform the elastic-plastic decomposition. If a tetrahedral edge
connects two atoms which are immediate neighbors in the input con�guration B, then
the corresponding ideal lattice vector has already been determined by the structure
identi�cation algorithm, and we are done. As shown in �gure 3, tessellation edges
may, however, connect non-nearest neighbor atoms, in particular in the slipped
con�guration B1 where a tetrahedron may become elongated if cut by a dislocation,
letting its corner atoms move further apart. The ideal lattice vector of such a long
edge, a-c, can be computed by �nding a nearest-neighbor path a → b1 → . . . → bn → c
through the crystal that connects the two edge vertices. The total vector lac, describing
the relative position of atoms a and c in the stress-free con�guration, is then obtained
by summing up the ideal bond vectors in the path, i.e. lac = lab1 + lb1b2 + . . . + lbnc.
One can use shortest-path search algorithms such as Dijkstra's algorithm [5] to �nd
a sequence of nearest-neighbor bonds connecting two distant atoms in the lattice. In
section 3.11 we will discuss the complications that may arise from nearby dislocations,
which make the resulting vector sum path-dependent.

Now that the tetrahedral edge vectors have been determined for each of the
con�gurations B0, L0, B1 and L1, we compute the element-wise elastic and plastic
deformation tensors as described in section 3.3.
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3.9. Lattice symmetries and rigid-body rotations

If the crystal lattice possesses rotation or inversion symmetries, care must be taken
when choosing the two isoclinic intermediate con�gurations L0 and L1. For cubic
crystal structures, for instance, 48 equivalent choices for the isoclinic con�gurations
exist, corresponding to the 48 elements of the space group.

Let us assume that such a crystal undergoes a rigid-body rotation only (F = R).
To perform the elastic-plastic decomposition, we may pick any frame of reference
for L0 which is aligned with the atomic lattice from the set of equivalent lattice
orientations. L1, however, must be chosen such that the computed plastic slip tensor,
Fs, becomes identity. This is achieved as follows: The algorithm �rst picks some
trial orientation for the second isoclinic con�guration, L1, from the lattice's point
symmetry group. It then searches the crystallite for a local group of atoms (i.e. an
atom and its nearest neighbors), which has not undergone any plastic deformation.
This is checked by verifying that the central atom is still surrounded by the same set of
neighbor atoms in the �nal con�guration (using their unique identi�ers) and that the
transformation matrix Fs

∗, exactly mapping all its neighbor bonds from con�guration
L0 to L1, is in fact an element of the lattice's symmetry group.

The inverse of this transformation matrix is then applied to the initial choice for
the intermediate con�guration L1 to �align� it with L0. In particular, this will let
the plastic deformation gradient Fs

∗, computed for the rigid group of atoms above,
become identity. Note that the described alignment of the two isoclinic intermediate
con�gurations needs to be performed only once for each crystallite in the simulation
(each super cluster according to [14]), and not for every tessellation element.

3.10. Limitations

The described computational decomposition of the deformation gradient relies on our
ability to predict what the shape of a tetrahedral element would be in the absence of
stresses. To this end, we used a structure identi�cation method to �rst determine the
lattice or defect structure formed by the local group of atoms (in con�guration B),
and, on this basis, project what their (relative) positions would be in the ideal, stress-
free con�guration L . Conversely, we will be unable to perform the elastic-plastic
decomposition if the identi�cation algorithm fails to identify the atomic structure in
the �rst place. This may happen for three reasons:

(i) The atoms form an amorphous phase without long-range order. Then there is
no practical way of predicting what the arrangement of atoms would be in the
absence of external stress �elds (other than performing the relaxation procedure
described in section 3.4 explicitly). Hence, our approach is not applicable to
disordered systems.

(ii) The crystalline (defect) structure formed by atoms cannot be identi�ed by the
structure identi�cation algorithm because it is not covered by the structure
catalog. Clearly, not all possible defective arrangements of atoms can be
anticipated in practice. One example for such structures are unstructured
(general) grain boundaries. However, our method's inability to capture plastic
deformation in such crystal defects can, for some applications, be turned
into an advantage when it comes to the quanti�cation of competing plastic
deformation mechanisms: If the total plastic deformation of a specimen can be
measured by other means, for instance by unloading the material and measuring
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the irreversible macroscopic strain, then the contribution of non-dislocation
deformation mechanisms can be estimated from the di�erence of the total plastic
strain and the slip-based strain measured with our method. A similar approach
has been applied in [17] to quantify the contribution of grain boundary sliding to
plastic deformation in nanocrystalline metals.

(iii) The random thermal displacements of atoms (in an instantaneous MD simulation
snapshot) are too large and exceed the tolerance of the structure identi�cation
method. This is a technical issue, which largely depends on the sensitivity of the
employed structure analysis method. For instance, the common neighbor analysis
occasionally fails to classify the bond structure of atoms at elevated temperatures.
Usually this e�ect pertains only to single atoms in the crystal, while the bulk of
atoms are classi�ed correctly. Then it is possible to infer the ideal bond vectors
of unidenti�ed atoms from the known bond vectors of their neighbors (e.g., lab

gives lba = −lab, and lab and lac give lbc = lac − lab).

3.11. Dislocations

In sections 2.2 and 3.3, we described the general principle for calculating a deformation
gradient �eld from atomistics. The key device is the space-�lling tessellation,
which connects the same atoms in the reference, the �rst intermediate, the second
intermediate and the �nal con�guration. We can regard the edges of the tessellation
mesh as small line elements, which are transformed by the calculated local deformation
tensors from one con�guration to another. While each tetrahedron posses six
edges, only three non-coplanar line elements (edges) are required to compute a local
transformation tensor. In regions of the crystal where the elastic deformation �eld is
compatible, it does not matter which three edges we pick out of the six available edges
per tetrahedron. Any combination would give the same tensor.

Figure 5. Three tessellation elements (α, β and γ) are shown in the initial and
�nal con�gurations, B0 and B1, with the latter containing a dislocation. Each
edge of the tessellation mesh is mapped to the intermediate lattice con�gurations
L0 and L1. As element β is located inside the core region of the dislocation in
B1 (marked by the three black atoms), its shape in L1 is ambiguous. Even if we
individually map the three edges that bound element β to the ideal con�guration
they would no longer form a closed triangle (closure failure). In other words, the
three edges of element β form a minimal Burgers circuit around the mathematical
dislocation line, and the local elastic �eld is multi-valued.

In the vicinity of a dislocation, however, the elastic �eld is incompatible (or
multi-valued) and the mapping of interatomic bonds to an ideal lattice is ambiguous
as shown in �gure 5. Note that this picture is somewhat misleading since, in practice,
we map tessellation edges (line elements), and not atomic positions, from the spatial
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con�guration B to the associated stress-free con�guration L . This means that, inside
the dislocation core, where tessellation elements su�er from a closure failure, our
choice of the three non-coplanar edges will determine the obtained elastic tensors when
evaluating equation 9 or 10 respectively. This ambiguity is connected to the fact that
the exact location of the mathematical dislocation line is not precisely de�ned at the
atomic level. The uncertainty in the dislocation position leads to an unknown plastic
deformation increment, which is bounded by the product of the Burgers vector and the
diameter of the tessellation element intersected by the dislocation line. Usually, this
error is rather small in comparison to the macroscopic plastic �ow and can therefore be
neglected. In practice, we pick three edges at random for each tetrahedron to perform
the elastic-plastic decomposition. Thus, any local uncertainty errors resulting from
the incompatibility of the elastic �eld will be averaged out when integrating the �eld
over the simulation domain to obtain the macroscopic plastic deformation.

4. Examples

We have implemented the described elastic-plastic decomposition method in an
analysis computer code for atomistic simulation data. The code takes two simulation
snapshots and a set of stress-free structure patterns as input. It outputs the computed
�elds F, F∆e and F∆p on the tessellation mesh in addition to their macroscopic,
volume-averaged values. In the following we present two exemplary results obtained
with this analysis tool.

4.1. Sheared single crystal

To verify the method, we have simulated the shear deformation of a Cu single crystal
at T=300 K. As shown in �gure 6, the initial con�guration B0 is a perfect fcc crystal
in a periodic simulation box, with the (112), (11̄0), and (111̄) crystal directions aligned
with the Cartesian axes x, y and z respectively. The crystal is deformed at a �xed
shear rate of 109/s by continuously varying the shape of the periodic simulation cell
((112) [111̄] simple shear).

At about 12% (fully elastic) macroscopic shear strain, the maximum strength of
the material is reached and the crystal slips by homogeneous nucleation of partial
dislocation loops on parallel [111̄] planes. Several loops are nucleated in a rapid
sequence on adjacent crystal planes, resulting in several twinned regions as well as
stacking faults in the material. A large drop in the measured shear stress can be
observed, after which the stress rises again until one of the twin boundaries starts to
migrate at about 20% total shear strain, resulting in a second drop in the measured
stress.

The structure catalog used for this deformation �eld analysis comprises three
patterns: The fcc primitive cell (one atom), the irreducible unit cell of intrinsic stacking
faults (two core atoms), and the irreducible unit cell of coherent twin boundaries (one
core atom). Figure 6 shows a cross-sectional view of the total, plastic and elastic
deformation gradient �elds at the end of the simulation. The shear component of the
plastic deformation �eld is exactly zero in regions of the crystal that did not undergo
slip, and exhibits a large value in the faulted and twinned regions. The elastic �eld, in
contrast, has a uniform, non-zero value throughout the entire crystal. The microscopic
elastic �eld is superposed with random thermal noise at the atomic scale.
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Figure 6. Molecular dynamics simulation of a sheared single crystal, serving as a
test for the presented elastic-plastic decomposition method. Top left: The initial
and the �nal con�guration of the atomistic system. Top right: Visualization
of the shear component of the �elds F, F∆e and F∆p as computed with the
described method. Bottom: Plot of the instantaneous, volume-averaged value of
the measured plastic shear deformation �eld as a function of total deformation.

The averaged plastic shear magnitude, i.e. the integral 1/V
�

F∆p
xz dV over the

entire simulation domain, has been plotted as a function of the total deformation. As
expected, the measured plastic shear never exceeds the current total shear, and rises
in �xed increments, corresponding to fully slipped crystal planes. Each slipped {111}
atomic layer contributes δ =

√
1/2/N of plastic shear strain, with N being the total

number of {111} layers in the periodic simulation cell.

4.2. Nanoindentation simulation

We have applied the deformation �eld analysis to an MD simulation of a Cu thin
�lm nanoindentation experiment (�gure 7). The simulation box (about 45 nm wide in
each direction) contains 7.5 million atoms initially arranged on a fcc lattice. Periodic
boundary conditions are applied in the in-plane directions of the thin �lm. At the
bottom of the simulation box, several atomic layers are �xed to provide a rigid support.
The spherical indentor (radius 8.7 nm, modeled by an external force �eld) is pushed
into the {111} crystal surface with a constant velocity of 20 m/s. The temperature of
the system remains close to 0K during the entire simulation.
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Figure 7. Molecular dynamics simulation of a nanoindentation experiment. Top
left: Atomistic visualization of the dislocation structure beneath the indentation
site. Only atoms in defective arrangements are shown, while atoms with a perfect
fcc environment have been removed. Top right: Three-dimensional contour plot
of the plastic zone, showing only tessellation elements with non-zero plastic
shear strain magnitude (dislocation slip traces). Bottom: Cross-sectional view
of the deformation �eld. Colors visualize the local shear magnitude. The total
deformation �eld (center) has been decomposed into a plastic part (left) and an
elastic part (right). Black lines indicate the position of the prismatic dislocation
loops, which intersect the cross-section plane.

We have analyzed a snapshot of the MD simulation taken after 0.132 ns,
corresponding to an indentation depth of 2.6 nm. The upper left picture visualizes the
state of the atomistic system, in which only atoms in non-fcc arrangements are shown
to reveal the dislocation structure. Figure 7 shows a cross-section of the deformation
�eld beneath the indentor derived from the atomic displacements. The Delaunay
tessellation [1, 3], generated for the deformation �eld analysis, comprises about 45
million tetrahedral cells. We have plotted the second invariant of the inverse of the
left Cauchy-Green tensor, c = F−T F−1, being a measure of the local shear strain
magnitude in the current con�guration. In addition, we used the dislocation extraction
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algorithm (DXA) [15] to obtain a geometric line representation of the dislocations in
the plastic zone.

During indentation, several prismatic dislocation loops of increasing size are
nucleated beneath the indentor and move along three di�erent 〈111〉 directions into
the material. The indentor impact and the gliding dislocations produce elastic waves
that are re�ected at the rigid substrate, and which are visible in the instantaneous
deformation �eld.

The total deformation �eld has been decomposed into elastic and plastic parts
using the computational method described in this paper. This corresponds to
separating the slip traces of dislocations (plastic) from the intrinsic dislocation strain
�elds, the phonons, and the external indentor �eld (all elastic). In the upper right
picture, only tessellation tetrahedra with non-zero plastic shear strain are displayed
to visualize the three-dimensional trajectories of prismatic dislocation loops.

5. Summary

In classical molecular dynamics simulations, the elastoplastic deformation behavior of
materials emerges solely from the interactions of individual particles. In particular,
defects such as dislocations are not modeled explicitly. Therefore, it is not obvious
how to quantify plastic deformation in such simulations and to separate it from elastic
deformation.

In the present work, we propose a computational analysis method that enables
the separation of incremental elastic and plastic deformation at the atomic level based
on two snapshots of the simulated system. Our method allows us to measure the
overall plastic strain produced by moving dislocations and other defects and to obtain
a continuum �eld description of the elastic and plastic deformation. Thus, we devised
a practical method to calculate the continuum quantities F, Fe, and Fp from the
motion of particles in an atomistic system.

Our consideration of the classical de�nition of elastic-plastic decomposition in a
continuum showed that it is not directly applicable to analyses at the atomic level.
Acknowledging these practical di�culties, our goal was to develop a useful technique
that yields sensible results for a wide range of crystalline systems if they deform by
crystal slip mechanisms, in particular by the motion of dislocations and coherent
crystal interfaces.

It should be noted that our approach to measure plastic deformation is of
kinematic nature and does not require an explicit relaxation or unloading of the
atomic structure to a stress-free state, nor does it involve the concept of stress at the
atomic level. Thus, the described analysis method is e�cient, does not depend on the
interaction model employed in an atomistic simulation, and is not restricted to certain
crystal structures. It can be incorporated into existing molecular dynamics codes to
enable on-the-�y measurements of the inelastic deformation of a crystalline system,
complementing the classical stress-strain curve measurement. Another possibility is
to perform plastic strain rate measurements, by comparing successive snapshots taken
at regular time intervals. By numerical di�erentiation of the incremental strains, one
can obtain the elastic and plastic strain rates of the deforming system.
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